DO NOW

Two angles are supplementary. The larger angle measures 120 more than the smaller. Find the degree measure of each angle. (Solve using 2 variables.)

$$|e + \chi = |arger L|$$

$$y = smaller L$$

$$X + y = |80$$

$$X = y + |20 \qquad X = y + |20$$

$$(y + |20) + y = |80 \qquad X = |30 + |20$$

$$y + |20 + y = |80 \qquad X = |50$$

$$y + |20 + y = |80 \qquad X = |50$$

$$y + |20 + y = |80 \qquad X = |50$$

$$Y + |20 + y = |80 \qquad X = |50$$

$$Y + |20 + y = |80 \qquad X = |50$$

$$Y + |20 + y = |80 \qquad X = |50 \qquad X = |50$$

5.3 <u>Using Systems of Equations to Solve</u> <u>Word Problems - Day 2</u>

Perimeter problems: Use formulas

$$P_{\Box} = 2l + 2w$$

Value Problems: Value of vs # of In general > one equation is # of the other is value of

Remember:

2 variables and 2 equations

1. The length of a rectangle is 3 less than twice the width. The perimeter of the rectangle is 42. Find the length and the width.

Wilding let
$$x = length$$
 $y = wiath$ $y = wiath$ $x = 2y - 3$ $2x + 2y = 42$ $2(2y - 3) + 2y = 42$ $4y - 6 + 2y = 42$ $4y + 2y = 42 + 6$ $6y = 48$ $y = 8$ $y = 8$

2. A soda machine contains 20 coins; some are nickels and the rest are quarters. If the value of the coins is \$4.40, find the number of coins of each type.

let
$$x=\#$$
 of nickels (0.05)
 $y=\#$ of quarters (0.25)
 $\#$ of \rightarrow $x+y=20$ $x=5$ - $6x-6y=-100$
Value \rightarrow .05x+.25y=4.40 $x=5$ $x+25y=440$
 $x+y=20$ $x=20$ $y=340$
 $x+17=20$ $y=340$
 $x=20$ $y=340$
 $x=3$ $y=17$
Check: $x+y=20$.05x+.25y 4.40
 $x=3$ $y=17$
Check: $x+y=20$.05x+.25y 4.40
 $x=3$ $y=17$
 $x=3$ $y=17$

3. The cost of an adult ticket to a football game was \$1.75. The cost of a student ticket was \$1.25. The number of student tickets sold was twice the number of adult tickets. The total income from the sale of tickets was \$850. How many adults tickets were sold?

lickets were soid?

|e+
$$x = \#$$
 of adult tickets (1.75)

 $y = \#$ of student tickets (1.25)

of \longrightarrow $y = 2x$

value \longrightarrow 1.75x + 1.25y = 850

of 1.75x + 2.50x = 850

 $1.75x + 2.50x = 850$
 $1.75x + 2.50x = 850$

4. At a fast food restaurant, a family bought 4 hamburgers and 3 bags of french fries for \$4.20. At the same time, a family traveling with them bought 5 hamburgers and 2 bags of french fries for \$4.55. What was the cost of one hamburger and what was the cost of one bag of french fries?

let
$$\chi = \$$$
 hamburger
 $y = \$$ french fries
 $4x + 3y = 4.20 \xrightarrow{x-2} 8x - 6y = -8.40$
 $5x + 2y = 4.55 \xrightarrow{3} 15x + 6y = 13.65$
 $7x = 5.25$
 $4x + 3y = 4.20$
 $4(.75) + 3y = 4.20$
 $3 + 3y = 4.20$
 $3y = 4.20$

HOMEWORK

Worksheet - HW Word Problems - Day 2